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Despite claims that Bell's inequalities are based on the Einstein locality condition, or
equivalent, all derivations make an identical mathematical assumption that local hidden-
variable theories produce a set of positive-definite probabilities for detecting a particle
with a given spin orientation. The standard argument is that because quantum mechanics
assumes that particles are emitted in a superposition of states the theory cannot pro-
duce such a set of probabilites. We examine a paper by Eberhard, and several similar
papers, which claim to show that a generalized Bell inequality, the CHSH inequality,
can be derived solely on the basis of the locality condition, without recourse to hidden
variables. We point out that these authors nonetheless assumes a set of positive-definite
probabilities, which supports the claim that hidden variables or “locality” is not at issue
here, positive-definite probabilities are. We demonstrate that quantum mechanics does
predict a set of probabilities that violate the CHSH inequality; however these proba-
bilities are not positive-definite. Nevertheless, they are physically meaningful in that
they give the usual quantum-mechanical predictions in physical situations. We discuss
in what sense our results are related to the Wigner distribution.

1. INTRODUCTION

With the introduction of his celebrated inequalities in 1964, Bell (1964) pro-
vided the basis for an experimental test to distinguish quantum mechanics from
local hidden-variable theories. Since that time the universal interpretation of the
results has been that quantum mechanics violates Bell's inequalities because of its
“nonlocal” character, whereas local hidden variable theories satisfy the inequalities
because, as their name implies, they are “local.”

The situation is actually not so transparent. Bohr taught us to be aware of
ambiguous language. Although derivations of Bell's inequalities are evidently
based on Einstein’'s “locality” condition, couched in various phrases such as
“principle of separability” and so forth, mathematically all derivations make an
identical assumption, specificallyridden-variable theories introduce a set of
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a priori positive-definite probabilities P that are not predicted by quantum me-
chanics In Bohm'’s classic version of the Einstein—Podolsky—Rosen experiment,
e.g., a particle in a spin-singlet state decays into two daughter particles with zero
total angular momentum (see, e.g., Sakurai’s text (Sakurai, 1994) or Sudarshan
and Rothman, 1993, henceforth SR). According to local hidden-variable theories
there is an a priori positive-definite probability that the daughter particles will be
detected with spins “up” along a chosen axis. Quantum mechanics, on the other
hand, assumes that the daughter particles are in a superposition of states and so,
by definition, there can be no a priori probabili® such that their spins will be
detected along a given direction.

Contrary to this view, in SR we pointed out that quantum mechaluespre-
dict a set of a priori probabilities, in exactly the same way as do hidden-variable
theories, but the quantum probabilities are not positive-definite. They are nev-
ertheless meaningful in that when applied to physical situations they give the
standard quantum-mechanical answers, in particular the usual violation of Bell's
inequalities. Given the exact analogy in producing the two sets of probabilities
the distinction between “local” hidden-variable theories and “nonlocal” quantum
mechanics is dissolved. From this point of view one merely has two competing
theories that give two different sets of probabilities; it is unsurprising that hidden-
variables theories fail experimental tests of Bell’s inequalities because they used
the wrong set of probabilities for a quantum-mechanical problem.

The notion of “extended” probabilities dates back to Dirac and we have
not been the only authors to suggest that they can resolve the EPR paradox (see
Muckenheim, 1986; Mckenheimet al., 1986} but, needless to say, the SR ar-
gument has not found widespread acceptance. Recently, several rather old papers,
in particular one by Eberhard (1977) entitled “Bell's Theorem Without Hidden
Variables,” have come to our attention. Eberhard’s paper is of interest because it
claims to show that a more general version of Bell's inequalities, known as the
CHSH inequality (after Clausest al., 1969), is violated by quantum mechan-
ics, and that the CHSH inequality can be demonstrated solely on the basis of the
locality principle,without the introduction of hidden variable@A slightly later
paper by Peres, 1978, gives an almost identical argument; one by Stapp, 1985, is
in some respects similar.) At first sight these proofs appear to assume little more
than 2< 24/2. On closer inspection, however, we find that they “play into our
hands,” i.e., they may not make an explicit statement about hidden variables but
theydoassume a set of positive-definite probabilities. We now demonstrate this is
so, reinforcing the contention in SR that, despite any words employed, the crucial

4Mickenheim (1986) suggests the need for negative probabilities to resolve the EPR paradox, but
does not explicitly calculate the probability distribution. The study hyckEnheinet al. (1986) is a
historical survey about the subject of negative probabilities.
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mathematicabssumption in derivations of Bell's inequalities is not locality but
positive probability.

2. THE EBERHARD ARGUMENT

Eberhard (1977) considers two identical apparatand B, at two different
locations. On apparatusis a knoba that can be turned to two positions, 1 and 2.
On apparatuB is a knokb that can also be turned to two positions, 1 and 2. With its
knob at either position apparatdsan record a series of events. Itis notimportant
exactly what the events are, but we assume that for each event each apparatus can
measure only one of the two possible outcomes, which for simplicity we take to
be+1. When the knofa is in the position 1, we designate the outcome of jttie
event asyyj, with similar notation for position 2 and kndb For each event we
can thus in principle have;j = £1, as; = %1, 1 = £1, f2; = +1. However,
for each measurement we will choose only one setting on each apparatus, so a
given event will produce a pair of readings, suclwas= 1, 8, = —1. (Here and
later we suppress the subscrjpivhen it will not cause confusion.)

For a series oN measurements Eberhard next defines a quadtiguch that

1 N
czﬁj;a,-ﬂj. (2.1)

We see thaC = («;g;), the statistical mean of thi productse;g;. No
restriction is placed on the fraction of tiemeasurements for which thés and
B’s come out positive or negative, but note that each prodygf = 1 whena
and g have the same sign ardg; = —1 when they have opposite signs. Thus
C represents the fraction of events in whiclandg have the same sign minus the
fraction in which they have opposite sign.

Because each knob has two positions, there are four possible versions of
That is, we can define

Cu1 = (1)
Ci2 = (1p2)
Co1 = (a2p1)
Ca2 = (a2f2) (2.2)

(sum onj understood). HereCy; is just the above statistical mean when both
knobsa andb are in position 1, and so forth.
Now, for each event let

Yy = a1f1+ a1fo + azfs — azfo. (2.3)
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Then, the statistical mean gfis just

1N
MZNZ”
j=1
N
(11 + 12 + azf1 — a2B2)
-1

1
N i
= C11+ C12+ Co1 — Cypy, (2.4)

where in the second line we have again suppregsed

The locality condition enters the discussion when we attempt to put bounds
on(y).Recall that a knob will be setto either position 1 or 2 for each measurement.
We assume that a measurementfis independent of a measurement®nThe
a’s andp’s are thus treated independently. This is the locality conditon.

At this point a digression is necessary. Eberhard states that only one setting
of each knob (position 1 or 2) will be used for each measurement, and that thus
only oneq or g is recorded for each event. However, if this were indeed the case,
then for each measurement only one term imould survive (one produetg) and
the upper bound op would be 1 (cf. Egs. (2.3) and (2.7)). That the upper bound
turns out to be 2 shows thatathematicallyall four possible termag are present
in y. Consequently, not only are tlaes being taken to be independent of thi's
buta(B1) is being treated as independentw(s.). The rationale for including all
a’'s andg’s in y simultaneously comes from a suggestion of Stapp (1971). Stapp
and Eberhard (and Peres, 1978, in his nearly identical thought experiment), are
actually considering all possible outcomes of the measurements in a hypothetical
ensemble space. By doing so they intend to show that any conceivable outcome of
the experiment is violated by quantum mechanics.

One cantake several attitudes toward such a procedure. Afirst possible attitude
is that it is illegitimate to speculate about the results of unperformed experiments.
In other words, if one takes the quantity literally, the knobs must be set to
two positions at once, a physical impossibility. A second view is that it is indeed
legitimate to think about all possible outcomes of an experitend that if
one does so, one is forced to conclude that quantum mechanics is nonlocal. In
fact, there is a third possible viewpoint. As we will discuss later, jtfeare
derivable from the “master probabilities” employed in a standard derivation of
Bell's inequalities, quantities that are not directly measurable but nevertheless
have physical consequences. Hence, both the Eberhard procedure and the standard
derivation suffer from exactly the same ambiguities. For the moment it is not
important which philosophy one adopts; we merely treads a mathematical
quantity, as Eberhard does. At the same time, however, we see that by treating

5This concept is often referred to as “counterfactual definiteness,” after Stapp.
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all thea’s andp’s as independent, mathematically the locality condition becomes
indistinguishable from the general assumption of independent variables.

In any case, following Eberhard we assume 16 possible values foyedth
this stage of the exposition, Eberhard goes through an elaborate argument to show
thaty < 2 always. However, let us redistribute the terms in Eq. (2.3) and write

y = a1(B1+ B2) + a2(B1 — B2). (2.5)

Because3; and 3, are equal or of opposite sign, if the first term is nonzero, the
second term is zero and vice versa. Thus we can see triviallythatt-2 always
and|y| = 2.

But by the triangle inequality we know that

18 18
N 2 (@Br+oafa +aafr —cofo)| < D Neafr + oafa + oy — o)l
j=1 j=1

(2.6)
Yet from Eq. (2.4) and Eq. (2.3) this is by definition
18 1
|C11+C12+C21—C22|§Nj;l)ﬂ:ﬁx N x 2. 2.7)
The CHSH inequality follows immediately:
|C11+ Ci2+ Co1 — Cpp < 2, (2.8)
or, in more compact notation,
ICl <2 (2.9)

Eberhard next considers a quantum-mechanical experiment in which two
photons are emitted in the directions Afand B by an atom between them.
The photons are detected by polarizers; ea) is taken to bet+1 when one
polarization is detected andl when the other is detected. Unfortunately, at this
point the paper becomes very unclear. Eberhard merely asserts without calculation
that for each of theC’s in Eq. (2.2), quantum mechanics predicts that “if the
number of eventd is large enough, the@ = cos(a — 2b),” where 22 — 2b is
twice the angle between the polarizers. Actually, no approximation is necessary.
For spin-1/2 particles, the correct prediction is

Cqm = 3c0sY —cos P, (2.10)

which we derive below, and in whichis the angle between polarizers. (The result
for photons will be the samedfis taken to be twice the angle between polarizers.)
Note thatfol = 45° (2.10) giveLym = 24/2 > 2. Therefore, quantum mechanics
violates the CHSH inequality, just as it does the Bell inequalities.
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As mentioned earlier, the demonstration seems to assume almost nothing;
no hidden variables, merely “locality,” which implies that a certain mathematical
quantity y always equalst2. However, on closer inspection we find that more
than an assumption of independesrs and8’s is being made. In the first place,
the value 2 on the right-hand side of Eq. (2.8) is entirely arbitrary and results
merely from the choice of-1 as the “eigenvalues” fax andg. One could have
equally well-chosent1000. In that case, however, one would necessarily have
to assume that the corresponding quantum experiment also had eigenvalues of
4+1000. This matter is not so serious, but it nevertheless illustrates that the CHSH
inequality is not a purely mathematical assertion; a real measurement does lurk in
the background.

The central issue lies elsewhere. Eberhard’s version of CHSH inequality is
a statement about the statistical meanyofand therefore it does deal with a
probability distribution over the,. Moreover, the frequency that a particular
occurs is clearly taken to be positive. That probabilities should be positive-definite
is usually regarded as self-evident, but because the assumption is the crux of the
matter, we spend a moment examining it. (In the Appendix we detail where other
authors have made the same assumption.)

As mentioned, there are 16 possible combinations 8f + @18, + o281 —
azB2(= y), of which eight have the valug2 and eight have the value2. In
a sequence ol measurements, let us suppose thatoccursn; times and—2
occursn;, times, such that; + n, = N. Then

C= %[nl — nz]. (211)

If all frequencies are equal, i.e; = ny, thenC = 0. If n, = 0, thenC = 2 and if

n; = 0, thenC = —2. But here we have assumed that botlandn, are positive-
definite. Ifn, < 0,therC > 2.In otherwords, the step leading to the last expression
in Eqg. (2.7) is valid only whemn| = n.

The notion of “extended” (non—positive-definite) probabilities has been con-
sidered by a surprising number of prominent investigators, but the majority of
physicists continue to regard them with distaste, if not revulsion. Nevertheless, the
guantum violation of the bound ahis effectively due to the fact that quantum
mechanics allows negative probabilities. In the next section, we examine this claim
in greater detail.

3. QUANTUM MECHANICAL PROBABILITIES

Before deriving Eqg. (2.10), it will be helpful to summarize the procedure
for obtaining the standard Bell Inequalities in order to point out similarities to
the CHSH-Eberhard experiment. The reader is referred to SR or Sakurai (1994)
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Table I. Spin Combinations for Standard Bell Inequalities

Population Particle 1 Particle 2
Ny (+++) (——-)
N2 (++-) (——+)
N3 (+—+) (—+-)
Ng (=++) (+—-)
N5 (+-) (=++)
Ne (=+-) (+—+)
N7 (——+) (++-)
Ne (——-) (++4)

Note Hidden-variable models assume that spii-particles

can be emitted with- spin along each of three ax@sb, andc.

The notation 4-++) etc., means spin up along all three axes.
The eight possible spin combinations are shown. To ensure con-
servation of angular momentum, a particle of the type-¢+)

must be paired with one of(——) and so on.

for additional details; see also the Appendix. Like its successor, Bell's theorem is
valid for local hidden-variable theories, which involve only classical probabilities.

In a typical derivation such as Sakurai’s one assumes that spin measurements
may be made along any of three axasb, andc. A system of decaying atoms
emits N particles of which a certain fraction are taken to be, say, of the type
(a+, b+, c+) = (+++), which designates spin up along all three axes. To ensure
zero total angular momentum, each emitted particle of type-{) must be paired

with one of type ¢ ——). There are eight such spin combinations in all, as listed

in Table I.

The probability that4++) is emitted (and in the case of hidden variables,
detected) is defined simply &(+++) = N(+++)/N. One can immediately
object that such a probability is unphysical because to determine it one requires
three simultaneous spin measurements on a system of two particles, which is
impossible. To eliminate this difficulty, one forms pairwise probabilities of the type
P(a+, b+) = P(++), which represents the joint probability that the first particle
will be found+ alongaand the second partickealongb. This is easily done. From
the table, the total number of particles such that the first particle’s spimienga
is N(+—+) + N(+—-), which must be paired wittN(—+-) + N(—++), the
total number of particles for which the second particle’s spi# iglongb. This
combination is labeletll; + Ns. Next one forms traingle-type inequalities such as

N3 + N5 < (N2 + Ns) + (N3 + N7), (3.1)

which is obviously true, since we have just added positive numbel to Ns.
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Dividing by N gives by definition
P(a+, b+) < P(a+, c+) + P(c+, b+), (3.2

one of the Bell inequalities. Equation (3.2) involves only one measurement on
each particle and so represents a physically realizable situation. Note that the
“three-probabilities”P(+++) were reduced to pairwise probabiliti®{++) by
summing over the spins on the extraneous axis, in the above examfileem-
phasize that, just as was the case for the CHSH inequality, the Bell inequality is
valid only if the N’s and hence the P’s are taken to be positive-definite. In SR we
demonstrated that one can fogquantum probabilities R+++), analogous to the
classical probabilities, then sum over the third argument exactly as above to get
pairwise quantum probabilitieB(++) that violate (3.2) in the usual way.

By this point the reader will have noticed a similarity between #ein
Eberhard’s experiment and the three-probabilities here. Authors who derive the
generalized Bell inequalities introdugeas a measure of correlations between real
and imagined experiments but, as mentioned, if one takes it literally, it amounts
to having the apparatus knobs set on two positions simultaneously. This would
seem to represent the same sort of physical impossibility as that of making three
simultaneous spin measurements on two particles. Indeed, we will demonstrate
in Section 4 that the two procedures are identical: Introducing an ensemble of
hypothetical measurements is exactly equivalent to assuming a “master probability
distribution” that requires more than two simultaneous spin measurements on two
particles. Before doing so, however, we return to the Eberhard derivation.

Eberhard’s experiment involves four axasg,ay, b1, by, rather than three, but
otherwise is almost identical to the standard derivation of Bell's inequalities and
so it is not surprising that the above procedure can be followed to demonstrate a
violation of the CHSH inequality. We first need to compute the quantum pairwise
probabilities of the type just mentioneB(a+, b+). There are several ways to
do this. Following SR, we write the quantum-mechanical projection operator for
spin-1/2 particles as

M(at) = %(ua.a). (3.3)

In this equation, we are representing the Pauli spin matrices as a \eetoigy +
joy + ko,. Thuse - a = oya, + oyay + 0,8, represents a traceless2 matrix,
and 1 is the unit matrix. Now, the expectation value of any oper&loran be
written (O) = Tr(pO), wherep is the density matrix= diag(1/2, 1/2) for an
initially unpolarized beam. The probability of finding the first particle in the
state alon@is thus TrpI1(a)) = 1/2. Similarly, the joint probability? (a+, b+t) of
finding the first particle in the- state along and the second particle in tRestate
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alongb is

P(at, bt) = %Trl‘[(a)l‘[(bi)
- %Tr{(l t+o-a)(lto-b)

1
= Z(lia' b). (3.4)
Here, the standard identity has been used (see Sakurai, 1994)
(o-a)o-b)y=(a-b)l+io(axb). (3.5)

Because the Pauli matrix is traceless, taking the trace of (3.5) yialdb.2

Equation (3.4) is simply a sophisticated way of writing Malus’ law. The first
factor of 1/2 in (3.4) gives the probability of detecting a particle in thestate
along thea axis. The remaining factor/2(1+ a - b) = 1/2(1 + cosd), whereé
is the angle between polarizers. For photons(witeig taken to be the double
angle) this then represents the usual decrease in intensity with.desr a Bohm-
type experiment, which assumes an (antisymmetric) spin-singlet state, one should
choose the- on the right of (3.4) when computing(a+, b+) to conserve angular
momentum. With either sign, by inserting (3.4) into (3.2), it is straightforward to
show that quantum mechanics violates Bell's inequalities.

Forthe Eberhard experiment we take the knob se#tjinap, b, , b, to represent
the position of the polarizers on the measuring devices. Recall that his quantities
C = (aB) represented the fraction of events in whicland 8 had the same sign
minus the fraction in which they had opposite signs, irrespective of whether an
individual spin is+ or —. Evidently the equivalent quantum expression/ig(1 +
a-b)—1/2(1—a-b). Then

Cqmzal-b1+a1-b2+a2-b1—a2~b2. (3.6)

If the axes are chosen to be coplanar suchdhab; = a; - b, = a, - b; = cosf
anda, - b, = cos 3, then (3.6) gives exactly (2.10), which violates the CHSH
inequality for6 = 45°.

The derivation of (2.10) just given involved only pairwise probabilities and did
not go beyond standard quantum mechanics. With the projection-operator formal-
ism, however, it is not difficult to write down the joint probability for four “simul-
taneous” spin measurements among four axes. An example woltHbe++),
in analogy to the classical three-probability mentioned earlier that appears in the
derivation of Bell's inequality. Extending (3.4) to four arguments we take

1
P(Aal, nag, Ub]_, ‘L'bz) = ETr{H(Aal)H(Maz)H(vbl)H(rbz)} s (37)

wherex, u, v, T are chosen a1 to represent up or down. For the symmetric case
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this is
P(ray, nag, vby, thy) = 3i2Tl'{(1 +2o - a)(1+ po - a)(l+vo - by)
x (14 7o - by)}. (3.8)

We will need the antisymmetric expression later to make the subtraction just done
above. Assuming that a measurementtobn knoba requires— on knobb,
the antisymmetric case will have the same expression as (3.8) with the signs on
theb’s reversed. We calculate only the symmetric case and state the results for the
antisymmetric case as needed.

Working out (3.8) and making frequent use of identity (3.5) yields

P(ras, nag, vby, thy) = 1i6{1 + Auag - ap + Avag - by + Ata; - by
+ puvay - by + putaz - by, +vrby - by
+iiuv(a x a) -by +iiut(ag x ap) - by
+irvt(by x b)) -a +ipvr(by x by) - &
+ Apvt[(as - a)(b1 - b2) + 2(aq x &) - (b1 x b2)]}.
(3.9)

Notice that this expression is complex because of the imaginary elemess of

If we desire a real result to eventually make contact with the usual quantum pre-
dictions, we can easily eliminate the imaginary terms. Notel{at,)I[1(uay) x
I1(vb1)I1(zb,) has been written in an arbitrary order; it is not symmetric in the
arguments. There are 4! permutations of the arguments in this expression, 12 even
and 12 odd. In (3.9), each imaginary term is a triple scalar product, which is in-
variant under even permutations and changes sign under odd permutations. Thus
these terms vanish under symmetrization, as does the double cross product in the
last line. The symmetrized version of (3.9) is

1
P(\ay, nag, vby, thy) = 1—6{1 + Auag - a + Avag - by + Atag - by
+ pvag - by + puraz - by 4 vrby - by
1
+ éMWT[(al - &)(b1 - b2) + (a1 - b1)(az - b2)
+ (a]_ . bg)(bl . az)]}, (310)
which is entirely reaf.
61t is not actually necessary to symmetrize (3.9). One can leave it as a complex expression, but when
the sum over the extraneous arguments is performed as in (3.11), the imaginary terms cancel and the

result will be entirely real, as before. However, the complex four-probability is not symmetric in the
arguments.
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Table Il. Four Probabilities

1
P(H++++)=P(——) = E{l+a1-az+a1-b1+a1~bz+a2-b1+az-bz+b1-b2+A}

1
P(—+++) = P(+——-) = E{l_al'az_al'bl_al'b2+32'b1+32'b2+bl'bZ_A}

1

P(+—++) = P(—+—-) = E{l—al-az-i-al-b1+a1‘b2—a2~b1—a2'b2+b1-b2—A}
1

P(++—+4)=P(——+-) = 1—6{1+al‘32*al'b1+al'b2*32'bl+a2'b2*bl'bZ*A}
1

P(+++—) = P(———+) = 1—6{1+a1-a2+a1-bl—a1~b2+a2-b1—a2~b2—bl-bz—A}

1

P(++——) = P(——++) = E{l-i-al-az—al-bl—al-bz—az-bl—az-b2+b1-b2+A}
1

P(+—+—) = P(—+—+4) = 1—6{1—al'az+al'bl_al‘bz—aZ‘b1+32'b2—b1'b2+A}

1
P(=—+)=P(-++-) = gll-a-a—a by +a-by+a- by —a-by —by by + A}

Note Shown are the four-probabilities from symmetric wavefunction as computed from Eg. (3.10).
The quantity

A= %[(al -a)(by - b2) + (a1 - b1)(az - b2) + (a1 - b2)(by - @)].

Note that these probabilities sum to one. The four-probabilities for the antisymmetric wave func-
tion can be obtained by flipping last two sings, i.B(++++)as = P(++——)s, P(—+++)as =
P(—+—-)s, etc.

It is now easy to read off the various four-probabilitieB(-++++),
P(———-), etc., for each case merely by choosing the required sigis af
v, T. The 16 possibilities are listed for convenience in Table Il. Note that these
four-probabilities do sum to one and therefore in that respect behave as ordinary
probabilities. However, although it is perhaps not evident from inspection, several
of these probabilities can become negative. We plipt++—) and P(+—+-)
in Fig. 1. The antisymmetri®’s can be obtained from the symmetric ones merely
by flipping the signs on the two's.

From these four-probabilities one can form the quardiy in Eqg. (3.6) in
exact analogy to the procedure used for deriving the Bell inequalities. To compute
P(a;+, b1+), e.g., we only care that the first particle will be fousdalong a
and the second particle will be fourd alongb;. As before, we count all such
possibilities by summing over the two extraneous argumegtandb,. Thus, for
the symmetric wavefunction,

P(ai+, b1+) = P(+-+-) = P(++++) + P(+++-) + P(+—+-)
+ P(+—++). (3.11)
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Fig. 1. Four-probabilities from Table |11 &) Plot of 16P(+++—). (b) Plot of 16P(+—+—).
Note that these quantities become negative.
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Table Ill. Four Probabilities as Functions of Polarizer Angles

1 1
P(++++) = P(-——-) = [£(1+3C0% + 20052 + COSF + A} = E{4C3 +4C% -1+ A)
1 1. 4
P(—+++) = P(+——-) = E{l_ cosd +cosP — A} = E{4C —4C+1- A}

1 1
P(+—++) = P(—+--) = ;5(1+cosf —cos — A} = 1—6{—4c3 +4C +1- A}

1 1
P(H++—+) = P(—+-) = Tg!L—cosf +cosd — A} = E{4(:3 —4C +1- A}

1 1

P(+++-) = P(-——+) = {1+ c0os9 —cosP — A} = R{_4CS +4C+1- A}
1

P(++—=)=P(——++) = E{l—i— 2c0s? — 3cosh —cos P + A}

1
= 1—6{—4c3+c2 —1+4)

1
P(+—+-) = P(—+—+) = 1—6{1 —Cc0s —2c0SP +CcosP + A}

1
= E{403—4c2—4c+3+A}

1
P(+——+) = P(—++-) = E{l—i— cos§ —2cos? —cosP + A}

1
= 1—6{—403—402+4c+3+ A}

Note Shown are the same four-probabilities as in Table Il for the configuratiom; = a; - by =
bs - a; = cosd anday - by = cos 3. Now A = 1/3(cof 6 + co 20 + cosh cos 3). With the identi-
tiescos? = 2co€ 9 — 1 and cos8 = 4 cos 6 — 3cod all the probabilities can be written in terms
of one parameter, cés= C. This form makes it more plausible that some of tRecan become
negative.

Reading off thes®’s from Table Il and performing the sum yields
1
;@ +a-by), (3.12)

which is exactly Eqg. (3.4). For the antisymmetric wave function one obtains
1/4(1— a; - by). Similar expressions are obtained for the other three pairwise
probabilities. Clearly, subtracting the antisymmetric expressions from the sym-
metric ones and adding the four terms leads back to Eq. (3.6)4pThis proce-

dure must work because the four-probabilities are symmetric in all the arguments;
summing over any of them produces an equal number of terms of opposite sign,
which cancel out, leaving the usual quantum pairwise probabilities.
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4. DISCUSSION AND CONCLUSIONS

We have shown that, like the Bell inequalities, the CHSH inequality assumes
positive-definite probabilities and that quantum mechanics breaks both inequalities
effectively because it introduces negative weights to the measurements. These
negative four-probabilities enter the derivation in exactly the same way as the
classical three-probabilities entered the derivation of the Bell's inequalities. If
they are unphysical, it is not necessarily because they are negative, but because it
is impossible to make four simultaneous spin measurements on two particles. By
the same token, it is impossible to make three simultaneous spin measurements on
two particles. In any case, neither the classical three-probabilities found in Bell's
theorem, nor the four-probabilities that figure here are actually measured. Both
merely serve as “master distributions” from which to derive the usual pairwise
probabilities, classical and quantum, which are both positive-definite. To reiterate
our earlier remarks, from this point of view it is not surprising that the Bell and
CHSH inequalities are violated by experimental tests; they merely used the wrong
set of probabilities for a quantum-mechanical problem.

Although one might choose to reject negative probabilities as unphysical,
one should not reject the notion of master probability distributions in favor of
correlations between real and imaginary experiments because the two procedures
areidentical! Recall again that Eberhard’s quar@itywasC,; = % Z;\‘zl a1jpij,
which represented the fraction of eventss; that had the same sign minus the
fraction that had opposite sign. Thus by definition we can write

Ci1 = P(a+, b1+) + P(as—, b1—) — [P(as+, b1—) + P(as+, b1 -)].  (4.1)

Now, in exact analogy with the procedure of Section 3 we imagine that these
pairwise probabilities can be derived from a master distribution involving all
four axesay, ap, by, bs. In that case, as in Eq. (3.11p(++) = P(a;+, b1+) =
P(++++) + P(+++-) + P(+—+—-) + P(++—+), with analogous express-
ions for P(——), P(+—), and P(—+). There are thus 16 terms that contribute to
Ci1, similarly for C1,, Co1, andCy,. Writing out all 64 terms yields fof = (y):

C =2{P(++++) + P(=——=) + P(+++-) + P(——+)
+ P(+—++) + P(—+—-) + P(+——+) + P(—++-)
— P(++—+) = P(——+-) = P(—+++) = P(+——-)
- P(++—-) - P(—++) = P(+—+-) = P(—+—1)}.  (4.2)

TheseP’s are general and may be taken to be either classical or quantum. Notice
half enter with positive sign and half with negative. If all the probabilities are
equal, ther€ = 0. If those that enter with negative sign are zero, then 2, and

if those that enter with positive sign are zero, tiileg —2. All this is in complete
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agreement with the analysis of Section 2. Clearly, if Big are positive-definite
thenC < 2, but if the probabilities are allowed to become negative then this is
violated. If the P’s are assumed to be quantum, they take on the values given
by Table IlI. In this case, inserting those values into (4.2) gives exactly (3.6), as
before.

This demonstration shows clearly that ths can be derived from a master
probability distribution that involves simultaneous spin measurements along four
axes. Theonly difference between the classical and quantum cases is that in the
former we assume the probabilities are positive-definite. The master distributions
themselves cannot be regarded as any more or any less meaningful than the space of
hypothetical measurements, because the procedures are exactly equivalent. Indeed,
we see that there is no difference between the Eberhard procedure and the usual
derivation of Bell's inequalities.

There remains the problem of interpretation. Most people insist that proba-
bility be defined in terms of relative frequency of events, in which case it must
be positive-definite. In quantum mechanics, however, although one can define
the expectation value in terms of the square of the wave amplitude, which corre-
sponds to a relative-frequency interpretation, an alternate procedure is available.
The expectation value may also be taken as a function of the dynamical vari-
ables under consideration, e.g., position and momentum. Classically, one might
consider a Maxwellian distribution of particles in phase space; integrating over
position or momentum would give the marginal probability distribution for the
conjugate variable. Butin quantum mechanics, the uncertainty principle precludes
precise simultaneous knowledge of noncommuting variables. If one attempts to
associate a function with a distribution over noncommuting variables, such that an
integration over one of them gives the correct marginal distribution for the other,
then one finds that the distribution function must in places become negative. This
is the well-known Wigner distribution (Wigner, 1932).

In the case of spin, the different components of angular momentum do not
commute; hence no ordinary (positive-definite) probability distribution can be
defined over the various components simultaneously. Any distribution will share
with the Wigner distribution the property that it will become negative in some
region of “phase space.” For example, in the spi@-systems we have been
considering, the probability of finding§, in the + state, ands, in the + state is
given by taking the trace of the product of the projection operators, as we have
done earlier. Now, given a state wifh = +, the probability is 12 for finding
S =+, and ¥2 for S, = —. Suppose, however, that many measurements show
S, = +, always, but tha§, = + appears with probability andS, = — appears
with probability 1— A(0 < A < 1). The probability for findingS, = — must then
be (1/2)x + (1/2)(1 — 1) = 1/2. On the one hand, the probability&f = — must
equal zero. On the other hand, no mixtureéSpf= 4+ andS; = — can give a zero
probability forS, = —.
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This is quite a general property of noncommuting variables and has little
to do with quantum mechanics. In such situations the best that one can ask for
is that the probability distribution give the correct marginal distribution for one
of the variables, in our case one component of angular momentum. This is what
has been found in the present paper. The probability distribution for simultaneous
measurements along three or more axes are not positive-definite, but the marginal
distributions that give correlations between two spin components are, and are in
accord with the standard predictions of quantum mechanics.

The main point of this paper has been that assumptions beyond locality do
enter into derivations of Bell's inequalities. It is worth mentioning yet another
tacit assumption: that space is flat. The notion of parallel and antiparallel spins is
only well defined for flat space where the measurement axes (the “z” axes) can be
taken to be fixed everywhere relative to one another. In curved space there is no
universal definition of parallel and one can only compare spins in distant locations
by parallel transport of the measurement axes (von Boreszkowski and Mensky;,
2000). In the case of nonnegligible gravitational fields, then, the “nonlocal” EPR
correlation between two particles, to the extent that they can be said to exist at all,
must be the result of parallel transport, a local phenomenon.

Returning to probabilities, we find ourselves in a strange situation. If one
insists that probabilities remain positive-definite, we are forced to use vague and
imprecise concepts, such as “local” or “nonlocal” to describe the outcome of the
EPR experiment. On the other hand, we are able to formulate the precise mathe-
matical conditions necessary for the violation of the Bell and CHSH inequalities,
although at the cost of introducing negative probabilities. Most investigators would
say that a unified, physical interpretation of negative probabilities is, in fact, exactly
what is currently lacking. To be sure, Feynman conceded (sex&hheinet al,,

1986, and Feynman 1948; also Sudarshan, 1963; Mehta and Sudarshan, 1965)
that all the results of quantum mechanics can be analyzed in terms of negative
probabilities but he remained skeptical about the utility of such an approach and
that a useful meaning could be attached to it. Nevertheless, many of the interpreta-
tional problems associated with negative probabilities stem from an insistence on
viewing them within the framework of relative frequencies. This is clearly “no go.”
We have shown that a more natural framewaork for their interpretation arises when
one considers the expectation value as a measure of probability over noncom-
muting variables. One can even go further than we have and consider complex
probability measures (Srinivasan and Sudarshan, 1994, 1996), which also involve
expectation values. Under such circumstances it is well to bear in mind that imag-
inary numbers are more similar to rotations than to real numbers. One should
also bear in mind the very word “imaginary,” an obsolete relic of their original
status.

Note added: Since this paper was initially posted, 8dSéreceda has come
to essentially the same conclusions (see quant-ph/0010091).
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APPENDIX

Many researchers appear unwilling to accept tatassumptions beyond
locality are employed in the derivations of Bell's inequalities. We now list a few of
the proofs we have found and point out explicitly where the assumption of positive
probabilities enters.

Bell, 1964 In Bell's original proof, he defines two quantitie®a, A) =

+1, B(B, 1) = £1. He defines a normalized probability distributjefi.), such that
J dx p(1) = 1. The expectation value of the spin componeiitsa anda; - b is

P@&, b) = / dx p(M)AGE, A)B(b, 1), (A.1)
which he shows can be written (his Eq. (14)) as
P@E,b) = — / dx p(L)AG, L)AD, ). (A.2)
When another vectdt s involved, one has
P@, b) — P@3, ¢ = — / dx p(D[AG, )AD, 1) — A@E, M)AEG, )], (A.3)
Bearing in mind thatA(b, 1) = 1/A(b, ») one can rewrite this as
P@3, b) — P@3,¢) = / dx p(D)AG, ) AD, D[ADB, DAG, L) —1].  (A4d)
Bell then asserts
|P(8,b) — P& ¢)| < / dr p(W[A(b, M)A, 1) — 1], (A.5)

where, of course|A(3, A)A(B, A)| = 1. However, stricly speaking the triangle
inequality gives

PGB -PGEYI = [ MIABIACH -1, (A6)
which is equal to (A.5) only whefp| = p, i.e., whenp > 0.

Clauser et al., 1969 The CHSH paper makes the same assumption at the
identical point in their derivation, in their first (unnumbered) equation.

Peres, 1978 Peres’ derivation is almost identical to Eberhard’s and makes
the same assumption of positive weights in the same step, i.e. between Steps 1 and
2 of Eq. (2.7) of this paper.
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Stapp, 1971 Stapp’s proofis very similar to Bell's. He arrives at an expres-
sion (below his Eq. (8))

1 i !
V2 < szzjnzj -1, (A7)
j
whereny; = +1 andn;; = 1. He then shows this leads to the contradiction
/2 < 1. However, if then’s are +1, then the summand can only have values

0, 2. If N; and N, are the frequencies with which these two values occur, and
N; + N2> = N, then the right hand side can be written as

1 2N,  2(N—N N
[N x 0+ N2x2]=ﬁ=¥=2<1_ﬁl>. (A.8)

As in the Eberhard argument, a contradiction can always be avoided by fgking
negative.

Stapp, 1985 Stapp establishes a contradiction by demonstrating (his Eq. 8)
that

% an[fz rai(ha) + Toi(ha) +rei()]? > (V2 2)7, (A9)
i=1

wherer ai(la) = +1,rgi(ha) = £1, andrgi(h,) = £1. However, since the’s
are+1, the summand can have only one of three valug®), (2+ +/2)%, and
(2 — v/2)2. Then the above expression can be written as

%[nl(ﬁ)2 + na(v/2 + 27 4+ n3(2 — V207, (A.10)

whereny, ny, Nz are the frequencies with which the three terms occurrang
N, + Nz = n. Squaring out and combining terms yields

2 +n2+n 224+ V2)  2n3(2- 2
(g +ny 3)+ 2( \/_)+ 3( \/_). (A11)
n n n
Assumingn andng positive, this expression can become negative if
o —(n+ng2— v2)) (A12)

n 1
2 2+42

in other words, ifh; is sufficiently negative.

Bell, 1971 A proof that has been cited as qualitatively different than the
othersis Bell's 1971 proof. This proof is basically the same as the CHSH proof. In
Bell's version the probability density is also explicitly taken to be positive-definite.
The only difference is that nopA(&, A)| < 1 and|B(b, )| < 1. (In our notation
this corresponds t¢wi| < 1 and|g;| < 1.) This change merely strengthens the
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upper bound on the classical correlations. That is, in our Eq. (2.5), whereas previ-
ously|y| = 2, now|y| < 2. The rest of the derivation is consequently unaffected
and the CHSH inequality continues to hold. Furthermore, our demonstration of the
equivalence of the Eberhard procedure with the “master probability distribution”
procedure is also unaffected, since Eq. (4.2) made no assumption about the values
of the P.
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